Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks
نویسندگان
چکیده
Inspired by recent successes of deep learning in computer vision and speech recognition, we propose a novel framework to encode time series data as different types of images, namely, Gramian Angular Fields (GAF) and Markov Transition Fields (MTF). This enables the use of techniques from computer vision for classification. Using a polar coordinate system, GAF images are represented as a Gramian matrix where each element is the trigonometric sum (i.e., superposition of directions) between different time intervals. MTF images represent the first order Markov transition probability along one dimension and temporal dependency along the other. We used Tiled Convolutional Neural Networks (tiled CNNs) on 12 standard datasets to learn high-level features from individual GAF, MTF, and GAF-MTF images that resulted from combining GAF and MTF representations into a single image. The classification results of our approach are competitive with five stateof-the-art approaches. An analysis of the features and weights learned via tiled CNNs explains why the approach works.
منابع مشابه
Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks
Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...
متن کاملSpatially Encoding Temporal Correlations to Classify Temporal Data Using Convolutional Neural Networks
We propose an off-line approach to explicitly encode temporal patterns spatially as different types of images, namely, Gramian Angular Fields and Markov Transition Fields. This enables the use of techniques from computer vision for feature learning and classification. We used Tiled Convolutional Neural Networks to learn high-level features from individual GAF, MTF, and GAF-MTF images on 12 benc...
متن کاملImaging Time-Series to Improve Classification and Imputation
Inspired by recent successes of deep learning in computer vision, we propose a novel framework for encoding time series as different types of images, namely, Gramian Angular Summation/Difference Fields (GASF/GADF) and Markov Transition Fields (MTF). This enables the use of techniques from computer vision for time series classification and imputation. We used Tiled Convolutional Neural Networks ...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کامل